Partager

Mode clair Mode sombre

Temps de lecture : 6 minutes

24 novembre 2025

Chaque lundi, Les Électrons Libres vous propose un tour d’horizon des nouvelles électrisantes qui secouent le monde de la tech et œuvrent en faveur d’un progrès à même de changer votre quotidien.

Nabla Bio (JAM-2) et Chai Discovery (Chai-2) : L’IA au service de la conception de traitements médicaux

Et si l’IA générative permettait de concevoir les médicaments de demain ? Nous sommes peut-être à l’aube de la fin de la « loterie médicale ». Jusqu’à présent, trouver un nouveau médicament ressemblait à une partie de fléchettes jouée dans le noir. On testait des milliers de molécules en espérant toucher une cible, un processus lent, ruineux et souvent voué à l’échec. L’arrivée simultanée des modèles IA JAM-2 et Chai-2 promet de changer radicalement la donne.

JAM-2 de la startup Nabla Bio fonctionne comme une usine qui livre directement des anticorps efficaces et stables à vitesse fulgurante. Le modèle excelle sur les protéines GPCR, des interrupteurs cellulaires qui régulent tension, humeur, douleur et inflammation et s’avéraient jusque-là presque impossible à cibler. L’espoir : générer des anticorps contre les cancers (en visant des cellules tumorales spécifiques), les maladies auto-immunes (spondylarthrite, polyarthrite, psoriasis, sclérose en plaques), les infections, et à terme l’obésité, le diabète ou les douleurs chroniques.

De son côté, Chai-2, le dernier modèle d’IA développé par Chai Discovery, représente une avancée majeure dans la conception de novo (c’est-à-dire entièrement à partir de zéro) d’anticorps et de protéines thérapeutiques. Il excelle sur les cancers ultra-ciblés, capable de distinguer des mutations tumorales au niveau d’un seul acide aminé pour créer des thérapies personnalisées. Sa précision lui permet aussi d’activer des mécanismes de défense naturels du corps plutôt que simplement les bloquer.

L’un offre rapidité et faisabilité industrielle, l’autre une finesse fonctionnelle inédite. Ensemble, ils transforment la découverte de traitements en discipline d’ingénierie prévisible, ouvrant la voie à des maladies jugées jusqu’ici hors de portée.

Physical Intelligence π*0.6 : Le robot qui apprend de ses échecs

Demain, des robots s’occuperont du lave-vaisselle, du linge, du rangement. Mais un robot qui réussit une tâche en démo, c’est banal ! Un robot qui enchaîne pendant des heures sans commettre d’erreurs et qui apprend de ses propres erreurs comme un apprenti humain, c’est autre chose. C’est l’innovation du nouveau modèle π*0.6 de la startup Physical Intelligence : une IA robotique qui ne se contente pas d’imiter, mais qui se corrige.

Le secret ? Un algorithme de renforcement baptisé RECAP. Il regarde des heures d’enregistrements et distingue les actions réussies de celles qui ratent – la tasse posée à côté de la machine, la languette du carton manquée. π*0.6 garde ces erreurs en mémoire et annote chaque geste : « ça t’a rapproché du but » ou « ça t’a éloigné ».

Les résultats parlent d’eux-mêmes : 13 heures d’affilée à servir des cafés, des heures à plier du linge sans planter. Sur les tâches complexes, le taux de réussite double. Soutenue par Jeff Bezos et CapitalG (Google), Physical Intelligence vient de lever 600 millions de dollars, atteignant une valorisation de 5,6 milliards pour développer le cerveau universel des robots.

Zoox : Un robotaxi dans une voiture conçue pour ça dès le départ

Pour les habitants de San Francisco, l’arrivée, le 18 novembre, du nouveau robotaxi de Zoox promet de bouleverser le quotidien des habitants : vous montez dans une petite navette électrique sans volant ni pédales, et elle vous emmène gratuitement à travers la ville. L’impact immédiat pour l’usager est un transport plus sûr – la machine ne boit pas, n’envoie pas de SMS et voit à 360 degrés – et un temps de trajet transformé en temps libre, dans un salon roulant où on se fait face.

Le véhicule de cette filiale d’Amazon constitue une véritable rupture. Il ne s’agit pas d’un SUV modifié comme les voitures de leur célèbre concurrent Waymo, mais d’une capsule bidirectionnelle conçue dès le départ pour l’autonomie : portes latérales façon tram, capteurs partout, pas de contrôles manuels.

L’exercice reste contraint par des réglementations strictes qui requièrent la présence de contrôles manuels dans toutes les voitures. Zoox se trouve encore sous une exemption “recherche” qui leur interdit de facturer des trajets, d’où la gratuité actuelle. L’objectif est désormais pour l’entreprise d’obtenir une autorisation commerciale pour faire rouler jusqu’à 2 500 de leurs véhicules autonomes par an, dès 2026.

Valar Atomics : Le carburant propre grâce à l’atome

Et si c’était la clé pour décarboner l’aviation ? La startup Valar Atomics vient de franchir une étape historique avec NOVA, un test de réacteur nucléaire réalisé avec le laboratoire national de Los Alamos. Le but est de construire des milliers de petits réacteurs à haute température regroupés en « gigasites » pour produire chaleur, électricité, hydrogène et recycler du CO₂ en carburants synthétiques propres.

Le 17 novembre, NOVA a atteint la criticité : une réaction nucléaire en chaîne s’est déclenchée et maintenue d’elle-même. Le réacteur utilise du combustible TRISO (petites billes d’uranium enrobées de céramique) ultra-résistant aux températures extrêmes. En 2 ans, avec 19 millions de dollars, Valar prouve que l’atome peut être agile et sûr. C’est la première des 11 startups d’un programme fédéral américain à franchir ce cap, avec l’objectif de voir trois d’entre elles atteindre la criticité avant le 4 juillet 2026 (jour de la fête nationale US).

L’ambition de Valar Atomics dépasse largement l’électricité propre et vise les hydrocarbures synthétiques.  La chaleur nucléaire capturera le CO₂ de centrales à charbon ou de l’air pour le transformer en essence ou kérosène neutres. Plutôt que d’abandonner les énergies fossiles du jour au lendemain, la stratégie transforme les émissions existantes en carburants propres.

Meta SAM 3 : l’IA qui découpe des vidéos à une vitesse surhumaine

A ce jour, masquer un visage sur une vidéo, compter les voitures dans un parking ou vérifier un composant industriel exige encore des heures de travail humain et des coûts importants. Le nouveau modèle SAM 3 de Meta change la donne. On lui dit « la voiture rouge » ou « les mains », et il découpe et suit l’objet au pixel près dans n’importe quelle image ou vidéo.

Plus besoin de cliquer laborieusement. SAM 3 comprend des descriptions textuelles simples. Il traite des centaines d’objets en quelques millisecondes sur un GPU standard, rendant possible l’analyse en temps réel sans exploser les coûts.

SAM 3 remplace les armées d’annotateurs, un métier ingrat où l’on passe ses journées à tracer des contours sur des milliers d’images identiques. L’IA propose les masques, les humains valident. Meta a ainsi produit des centaines de millions de masques sur 4 millions de concepts visuels, à une vitesse impossible pour des équipes humaines.

Bien que le cœur de SAM 3 soit axé sur la segmentation et le tracking en 2D pour les images et vidéos, Meta a sorti en même temps SAM 3D, un complément dédié qui transforme précisément des photos 2D en objets 3D réalistes. C’est une extension naturelle de la famille SAM, et les deux modèles sont souvent utilisés ensemble pour une expérience fluide.

Les applications émergent déjà. Des développeurs créent des correcteurs de technique de tir en temps réel pour basketteurs, des analyseurs de film de match qui repèrent les erreurs tactiques, des trackers qui détectent la dégradation des mouvements avant blessure.